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Nonlinear Bridge for Measuring Electrothermal Characteristics
of Bridgewires

This report describes the theory, construction, and operation
of a new instrument developed to determine the thermal parameters
of bridgewire type electro-explosive devices. The new instru-
ment allows much more rapid measurement of the parameters than
previously possible, but of even greater significance is the
fact that it allows simple measurement on devices having bridge-
wires of low thermal coefficient of resistivity (for instance,
nichrome).
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INTRODUCTION

The measurement of the electrothermal parameters of a
bridgewire and their dependence on the surrounding explosive
mixtures in electro-explosive devices (rEDs) can be of value in
rED studies. The response to various electrical input waveforms
obviously depends on the thermal time constant (W, the heat
capacity (C ), and the heat loss factor (y). A simple and
convenient thermal model based on a lumped single time constant
system follows the power equation:

-+ ye (t) (Cp

where P(t) is the power-time function and e is the temperature
elevation of the bridgewire. The thermal time constant T is
defined according to T-C./y. Although more complex models
can be proposed when nectssary, this simple model can explain
many of the electrothermal characteristics observed in rEDs.
The task is to measure the parameters in a meaningful and
reliable manner and apply them in areas such as quality control
and design.

The differential equation (1) can be solved for known
transient waveforms to obtain the constants'*. For example,
impulse and step function power waveforms give rise respectively
to exponential cooling or heating curves' which can be analyzed.
It has been verified that a single time constant can provide a
reasonable equivalent model for most bridgewires. In order to
track temperature variations, the temperature coefficient of
resistivity (a) must be known since it is actually a resistance
variation which is measured. In cases where a is very small it
is difficult to extract temperature variation information from
a transient response curve.

As another approach to the measurement of thermal response,
dynamic measurements can be made for a sinusoidal power source.
If a sinusoidal current is passed through a thermally sensitive
element the power dissipated has an average value and a component
at a frequency of 2w, where w is the current frequency. The
cyclic power variation gives rise to a resistance variation (of
the same frequency) which lags for positive M systems, the power
sinusoid by some angle. This angle of lag is related to the
thermal time constant of the unit. In addition a resistance
variation at "2w" when multiplied by the current at "w" yields
a third harmonic voltage at "3w". The magnitude of the third
harmonic (3w) voltage and its phase angle are clues to the
thermal parameters for the bridgewire.

* References are listed on page iii.
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An earlier paper' described this harmonic generation
principle and suggested a system for tracking the thermal follow
as a function of frequency. For example, it apears that the
third harmonic will be down by 3 decibels (1/(7) where lm/2w.
A variable frequency driving source was required. As a more
direct and simpler procedure a single frequency can be used and
by measuring the thermal lag, the time constant can be ascertained.
A nonlinear bridge is employed for these measurements. Another
advantage of the harmonic generation technique lies in the
inherent high resolution provided. The presence of a third
harmonic can only be a result of thermal follow. Follow being
the ability of the bridgewire to thermally track the driving
signal. Although the resistance-temperature sensitivity might
be small, there will be a third harmonic which cannot be mis-
taken. The theoretical aspects of the measurement will be
described.

THEORY

Consider an electrothermal element passing a current

iIlsinet.

The instantaneous power dissipation will be:

iUR- - R(l-cos2wt), (2)
2

where i is the instantaneous current and I is the maximum current.
Note that there is an average and cyclic component to the power.
This aror cyclic power variation is:

Pac" Ii Rcos2wt (2a)

where R is the hot resistance due to an average power:

Pav Z (2b)

Because of the ac.power variation there is a temperature fluctu-
ation Pac/Y and a resistance fluctuation

Rac --.P (3)

where a is the temperature coefficient of resistance determined
at the hot temperature. Note that Rac is a variation of
resistance superimposed on the average hot resistance, R, of the
ED. The resistance variation can then be described in the time

dependent form

Rac Scos2st (3a)

providing the follow is complete. Actually the Rac variation
lags at some angle 0 and is in phase with 0(t), the temperature

2
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rise-time function. From the basic differential equation the
lag angle O-tan- 2WT. The product of the instantaneous current
term and the resistance variation term yields the dynamic
voltage drop across the element according to

a a

2.Lcos2wtsinwt (4)
2Y

If the trignometric term is expanded as

cos2wtsintsnm .gjmD.3 (4a)4 2
then a third harmonic voltage amplitude is found as

(4)

where Vs is the maximum third harmonic voltage. Inserting the
rms values results in

wig R8 -C
v&XW VMS(4c)

2Y
This voltage is lagging at the same angle as the resistance
follow (0) and falls off with frequency in atcerdmace with

1/dA+t anT 0 .
The instantaneous value of the third harmonic voltage is

VS M sin (3wt-0)

/2Y/l+tany 19 (5)
where va (t) signifies the instantaneous third harmonic voltage.
This equation describes the fall off in amplitude and the phase
lag observed in the harmonic generated as a function of frequency
since tanO-2wCp/y-2wT. These equations complement the
derivations of reference 3'. Rather than seek the frequency where
tanO-l corresponding to a decrease in the third harmonic amplitude
by 1//2, it is possible to measure the angle of phase lag at a
fixed frequency. This can be accomplished by comparing the third
harmonic generated with the fundamental current waveform in a
Lissajous phase display. By introducing a calibrated phase lag
into the current waveshape a zero phase shift display directly
yields the value of 0. This can be demonstrated by reference to
Figure la which shows the basic bridge circuit.

A voltage source Vsinwt supplies a constant current through
the KID (R) under test since R, is much larger (100 times) than R.
The voltage drop across R contains a fundamental component and a
third harmonic. There is a phase shift in the fundamental due
to thermal follow as shown in the expansion of equation (4a).
All of the fundamental signal in the error voltage can be elimi-
nated by means of Cx and Rx leaving a nearly pure third harmonic.
At balance RR 1RR/Rx

3UNCLAS8 IF lED
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neglecting the slight reactance of C . The third harmonic can
be measured and displayed on an oscilloscope. In addition
another signal which is in phase with the current is passed
through the lagging phase shift network RsCs to provide a refer-
ence phase voltage which can be applied to the horizontal
deflection system of the oscilloscope. If the fundamental is
shifted by 1/3 the amount the third harmonic is shifted due to
thermallag, then both waveforms will be in phase for the oscillo-
scope display. The result is a unique single valued cubic wave-
form trace

For example if

v - A sin 30t
and h - B sin Wt

corresponding to two waveforms starting from zero in phase with
amplitudes A and B respectively, the resulting trace can be
determined.

Starting with the identity

sin3wt-3sinot-4sinawt

and substituting the vertical (v) and horizontal (h) deflections
indicated

v/A . 3-

or V - - (6)

which is the equation of a cubic as sketched in Figure lb. The
amplitudes at pts 1 and 2 must be equal and the figure is
symetrical about the origin. If some fundamental is in the
output or if there is a phase shift then the display opens up,
as will be shown later.

Since this unique phase display is a result of matching
phase laqs, the phase shift of the network R2C9 can be calibrated
as 0/3 or directly as 0. It can also be calibrated as a time
constant since tun 026- . The maximum phase shift required in the
RaCh network is 300 corresponding to a 90* thermal lag (or no
follow). All measurements can be made at a single frequency.
The maximum value of R9 required is Xc/1 3 (for 309 phase lag).
Knowing the phase lag and the third harmonic amplitude it is a
simple matter to apply the indicated equations for a determination
of I and Y.

THE APPARATUS

A practical circuit is shown in Figure 2. The 60 cps line
supplies power to the ZED through a 500 ohm power resistor. With

4
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25 volts available it is possible to pass 50 ma through R. If
a variable transformer is applied to the input this current can
be reduced to any desired safe level. The current is easily
masured by replacing R with a 1 ohm precision resistor and
measuring the voltage drop across it. The adjacent comparison
arm includes a 20 ohm resistor and a 1K to 5K ohm adjustable arm.
A 1K Helipot is included in this arm for a fine degree of balance.

At balance R=IOO0O/R x and as shown the range of the bridge
is 2 to 10 ohms. By reducing R4 to 10 ohm by means of a paral-
leled resistor, the range is cut in half. An external capacitance
balances out the reactive components of bridge unbalance.

A high quality isolation input transformer raises the error
v6ltage by a factor of 19.25. This transformer is well shielded
and offers no phase shift at the frequencies of interest, which
for a 60 cps input corresponds to 180 cps. Care must be taken
to provide good grounds and negligible pick-up. With a typical
drop of 100 mv across the RED, a 1 millivolt error signal, after
the transformr, corresponds to a resistance change of 0.05%.
For adequate resolution, an oscilloscope of 1 mv/ca sensitivity
should be employed.

The phase shift network is designed for 60 cps, to provide
a maximum phase shift of 37e . There is a small variation in
amplitude with phase shift which merely changes the horizontal
amplitude of the phase display. Although the phase shift can
be calculated for various values of Ra it is more convenient to
calibrate this network using a commercial phase angle meter or
a counter used for time interval measurements. A practical
calibration curve is shown in Figure 3 to provide tan 0 directly.
In Figure 4, the tan 0 data is plotted to yield T, the time
constant, directly based on tan 0-2WT where w-377. Using 60 cps,
the line frequency, time constants from 200ps to 20ms can be
measured. If a lower frequency power source is available, this
measurement can be extended to large time constant units. Some
experimental observations and measurements are presented V
demonstrate this technique.

RESULTS

If the bridge of Figure 1 is supplied with a variable
frequency source, the harmonic generation and phase shift can be
investigated as a function of frequency. For a particular
bridgewire the curve of third harmonic vs frequency is shown as
Figure 5. Complete follow yields 9mv of harmonic across the
bridgewire. At 130 cps the third harmonic is down by 1//2 and
at 225 cps (/3x130 cps) it is down by 1/2. The curve follows
the response of a single time constant circuit fairly closely.

5
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Based on the -3 db point the thermal time constant in 610 gs.
This same unit was measured to have a time constant of 685 go
from cooling curve exponential decay data.

Measuring the phase shift in the thermal follow by the
technique described in the previous paragraphs there is a
fairly linear relationship between tw 0 and w (Figure 6) indicating
that the time constant is independent of frequency. For data
taken at five frequencies the average time constant comes out
as 601 s. This is in good agreement with the third harmonic
response data.

The third harmonic amplitude function was checked out for
another unit at a fixed frequency of 60 cps. This dgta il shown
in Figure 7 as a plot of third harmonic voltage vs I "*R. If
a and Y are assumed constant then a linear rolationship should
exist. The plot demonstrates this. Actually the bridgewire
resistance varied from 2.75 ohms at 10 m current to 3.32 ohms
at 50 ma. It was observed that the time constant varied by 10%
(increased) during this current range in which the power dissipa-
tion varied by a factor of 25. Previous tests have indicated
that time constant can vary with power level.

Since the harmonics generated depend on the cube of current,
a small variation in current will reduce the useful signal
significantly. The current must be at a safe level if the device
under test is loaded. Some typical waveforms observed are shown
in Figure 8. At the top, the error waveform contains a distinct
fundamental which can be cancelled out by the resistance (Rx)and
reactance (Cx) balance to yield an essentially pure third harmonic.
At balance all amplitudes are equal. As a phase display the center
trace contains a fundamental component resulting in an opened type
of Lissajous figure. A phase shift will produce the same general
type of display. Only at balance will the single cubic trace
shown at the bottom appear.

The fixed frequency bridge of Figure 2 provides a rapid
measurement. After the current is set to the desired level, the
bridge is balanced by means of Rx and Cx. The third harmonic
output is noted and the error is displayed as a phase pattern.
By adjusting the phase shift network, the phase is balanced to
provide a single cubic trace as previously described. From the
phase reading, Figures 3 and 4 are employed to give the time
constant T and tans. Now going back to equation (5), and intro-
ducing the transformer stop up ratio of 19.25 the value of Y is
determined according to

I a CL
¥ = N x 19.25 x (7)

2Vams

6
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The temperature coefficient of resistivity a must be known or
determined from some other procedure. Note that multiplying the
observed third harmonic by the factor !tans corrects the
amplitude back to the complete follow region. The resistance is
known from the reading Rx.

A series of measurements were made on a bridgewire to
demonstrate the influence of environment on the thermal parameters.
The same unit was used in all measurements at a current level of
50ma.

Heat Loss
Resistance, R Time Constant,1 Factor, Y

Environment ohms m sac uw/1C
Air 4.25 4.2 70
Ethyl Acetate 4.15 1.6 318
Water 4.11 0.98 1220
Lacquer (Dry) 4.11 0.73 1270

The environment acting as a heat sink increases the heat loss
factor and reduces the thermal time constant. Note also that as
the heat sink increases, with the corresponding increase in y,
the lower the average temperature and therefore the lower the
hot-resistance value, R. However the additional mass surrounding
the wire has also increased the effective heat capacity. If an
explosive mixture were to surround the wire, the intimacy of
contact would similarly reflect in the change of thermal parameters,

The type of measurement possible has been indicated. The
usefulness of the measurement will depend on whether electro-
explosive device performance can be related. This bridge method
appears to offer a quick and reliable measurement technique.

CONCLUSIONS

The measurement of the thermal time constant and the heat
loss factor of a bridgewire from the amplitude and phase shift
of the third harmonic generated in it by a sinusoidal current
has been shown feasible. The theory and mathematics have been
presented and an electronic instrument which was built for the
measurements has been described and detailed. The new instrument
greatly accelerates the measurements of the thermal time constant
and the heat loss factor. The instrument will be particularly
useful for making measurements on EEDs containing bridgewires of
very low thermal coefficients of resistivity, such as tophet -C.
The measurements made with the new instrument show the results to
be in good accord with the theory and mathematics, and in addition

7
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indicate that in general the thermal characteristics of a bridge-
wire can be described by the constants of the simple power
balance differential equations

d e +. ye- = (t)
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